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We present a nonparametric way to retrieve an additive system of differential equations in embedding space
from a single time series. These equations can be treated with dynamical systems theory and allow for
long-term predictions. We apply our method to a modified chaotic Chua oscillator in order to demonstrate its
potential.
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Casting physical observations into mathematical equa¥:R"—R™, m>2d, is an embedding, i.e., a smooth diffeo-
tions is one of the fundamental tasks to understand and prenorphism from.4 onto its imageW¥(.4). The conditionm
dict dynamical systems. Basically, there are two complemen=>2d is sufficient, therefore cases with< m< 2d can occur.
tary approaches to accomplish this task: theoretically, by pue to differentiability, the dynamics of(t)=\If(>_<’(t))

convenient considerations, and empirically, by data analysigpeys an ordinary differential equation in embedding space,
Both approaches are essential for modern modeling strate-

gies. If, for many systems, the dynamics is not directly ac- = .

cessible to theoretical considerations, then an appropriate E=d(9, 2
data analysis is essential. This problem is very general;, one - ) o

can find it in classical fields of physics, e.g., classical meWith € ™, ®:R™—R™. In this paper, we focus oadditive
chanics, fluid dynamics, solid-state physics, statistical physfodels for the component®; and show how to retrieve
ics, as well as in more interdisciplinary fields, e.g., physiol-them from data. o

ogy, earth sciences, economics, or biological systems. In this ONne standard way of embedding is the use of the delay-
paper the data analysis issue is addressed: we determine ¢@Prdinate magH(f, 7), with the smooth observation func-
analytically treatable set of additive equations in embeddingion: f:R"—R, andr, the time delay, some real numhe,
space by the method of nonparametric embedding. This ap-

proach isa priori parameter-free; bligubsequenparametri- H(f,n) = (f,f[F_.], ... f[F-m-p)-])- 3)
zation can be helpful for analytical representation of the in-
volved functions. As an example, consider the particular casé(gf=x,. Iden-

Often, the measurement of a complex system does ndifying the above embedding map with H, the coordinates
yield the whole set of state variables. The missing dynamicén embedding space aré;(t)=f(X)=x;(t), & () =f(F_ (X))
can be accessed by tleenbeddingechnique[1]. Given the  =x,(t—7), etc.
measurement of a subset of variables, one can infer the miss- In our analysis, we perform numerical simulations for
ing information by an embedding map, e.g., by using thesome model systems to obtain the time series of various
time-delayed variables or their derivatives. This has beewariables. We then discard all but one variable to embed the
proven rigorously for a wide class of systef@3. It is, how-  dynamical systent2) using the delay map. To avoid confu-
ever, not known how the equations of the dynamical systengion, we will refer to dynamics from Eql) asoriginal. For
in embedding space are structured. In this communicatiorthe counterpart, Eq(2), to be estimated by nonparametric
we propose a technique to find a set of equations whichegression, we will use the terraconstructedIf the embed-
allows a reproduction of the dynamics in phase space for thding map¥ is concernedembeddedill be used—the latter
class ofadditive systems. meaning that a time series from the original system is used,
There are several excellent reviews about embeddinge., without knowing the dynamical syste(®).
[2—4]; therefore, we only repeat some basic facts. We con- To find a dynamical system in embedding space, several
sider a system governed by a set of ordinary differentiabpproaches exist, e.g., local linear fits and parametric proce-
equations, dures as polynomial fits, radial basis functions, or neural
) networks(cf. [3]). Local fitting is a general concept, but the
X=F(X), (1)  results are neither easy to access analytically nor to visualize
due to the high dimensionality. Polynomial ansatzes tend to
i : involve too many terms for a clear identification of a math-
flow, F, in phas_e space. We assume that '_[here exists an gl atical or physical structure; for neural networks a physical
tractor A C R" with the box-counting dimensiodi<n. In [2] interoretation i hard
) pretation is very hard.
it has been shown that almost every smooth map o we describe our procedure in more detail: Consider-
ing each temporal measurement as a realization of the flow,
one obtains as a best estimator of the components ofZtq.
*Electronic address: markus@stat.physik.uni-potsdam.de in the least-square senf®:

where X e R", F:R"—R". This set of equations defines a
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O, =E[E]é, .. &, (@) &
. N ) 100
with E[-| -] the conditional expectation valdEEV) operator.
. . 60
It is a very hard task to extract analytical models from Eq.
(4); visualization is obviously impossible fon> 2. 20
To tackle this problem, we require the right-hand side -20

(rhg) of Eqg. (2) to be an additive model,

m
D=2 (). (5)
=1 FIG. 1. Embedding of the first component of the syst&jrwith
delay 7=0.2. The system, embedded with=3 (bottom), is shown
This is a subset of the class of models considered by Koltogether with the reconstructed trajectory from the integration of the
mogorov[5]: he showed rigorously that it is possible to rep- systems obta_lned by nonparametric regression for (_ambeddlng di-
resent any continuous function of a setrfvariables as a Mensions 3middle) and 4(top), respectively. An offset is added to
2m+1-fold superposition of functions of one argument. 2Vold overlap of the attractors.
Below, we show that despite the less general formulation it is
possible to reconstruct a chaotic dynamical system. Our m m
model (5) is, however, still in a wider model class than in CiOZC[(Di;E ¢ik:|v G :C[f/’ij;q)i - ¢ik:|- (7)
parametric methods, because we do not rely on a given set of k=1 k#]

basis functions. After_ haying _finaIIy estim_ated the compo-\\e will useC;, as a quantitative measure, but ndt Putting
nents¢;;, we can easily visualize the functions and try ana-q, —y sm bic
| ’ |

; w1dik=X, we give the relation between both mea-
'V“C"’T' formulas. . . sures: 2 CjgyVar(X)Var(Y)=Var(X)+Var(Y) +[E(X-Y)]?
It is worth noting the geometrical aspect of our approach:_ >

8 . ] . . ! =X/, with Var(-) the variance. A correlation close to 1 means
Equation(2) defines a differentiable manifold approximated ,, "' . . . :
by the sum of the functiong;, cf. Eq. (5). This is possible the manifold described by E€R) is approximated very well,

- . b~ s lower correlations indicate scatter of data points around the
within a certain scatter, which is quantified below by the . ;
. . . manifold. In the case of experimental data, measurement
correlation. If the manifold is found exactly by the model,

the correlation is 1. Dynamical and topological properties of 10!5€ can produce some additional scatter.

the original system are mirrored in embedding space. Long- In the following, the procedure is illustrated by the ex-
ginal sy X g space. gample of a modified Chua circyif] with a third-order non-
term predictions of the dynamics are thus possible on th

basis of the obtained model if the correlation is close to 1’ﬁnear|ty. The basic equations read

which is a very strong advantage. X1 = a(Mgxy — 1/3mpx + Xp)
The optimal estimate for the;; is calculated by the back- ! '
fitting algorithm [6]. It works by alternately applying the

CEV operator to projections ofb; on the coordinates: =X Xt X X =~ DX (8)
¢ij(§j):E[§i‘Ek¢j¢ik|fj]v and is proven to converge to the written as an additive mode(5) these equations read
global optimum in the least-squaf&g. (6)] or correlation  x,=f, ;(xy)+f; (%), Xo=F5 1(X9) + 2 A(Xp) + 5 5(Xa),

[Eq. (7)] sense. For the application to spatiotemporal dat%:fs,z(xz) , with the linear functiong ,, f,;, f3, andf; ; a
analysis, seq7,8. We calculate the CEV by smoothing third-order polynomial.
splines, which are optimal for nonparametric regres$gin We integrate the systerf8) with a=18, b=33, my=0.2,
due to their smoothness and differentiability properties. It isy, =0.01, numerically, by a Runge-Kutta algorithm of fourth
important to note that th_e parameters used by splines or othgfder. The time series of the first component is used for
estimators are method inherent and not prescribed by a prgmpedding. Results do not change for other components. We
selected model; in this sense the model is parameter-free. first discuss embedding dimensiam=3. From the time se-
As an overall quality measure, the least-square error cap L :
v quality u qu ries x(t), the pointsg=x(t—(i—1)), &=x(1), &E=x(t-17), &

be used, =x(t-27) are used. The derivative is taken directly from the
integration; this is more exact than the estimate by finite
m 2 . . . .
) differences. The nonparametric regression yields the func-
X =E| | -2 (6)  tions ¢ for the resulting dynamical systets).
k=1 First, we present results for the specific delay0.2; we
study below the dependence of the results on the delay time.
The backfitting method, however, is formulated as optimal inFor 7=0.2, the embedded and the reconstructed attractor are
the sense of correlation, i.e., the natural measure is the coshown together in Fig. 1. With respect to the data analysis,
relation coefficientC;, between the rhs and Ihs in E(p).  we want to quantify(i) the quality of the regressiofij) the
The correlation coefficienT;;, given in Eq.(7), indicates its  importance of the functiong;;, and(iii) the functions them-
individual weight for the model, selves.
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FIG. 2. Reconstructed functiong;, i=1,2,3 in enbedding B —1 Y v
space.(a) ¢y, (b) ¢y, (C) ¢g, for j=1 (solid ling), j=2 (dotted T T
line), and j=3 (dashed ling All functions are important with -
C;;=0.999, C,,=0.99, C;3=0.998, C,;=0.999, C,,=0.991 FIG. 3. Lyapunov exponents for original and reconstructed sys-
Cz;:0.999:C31:O.997,’C:32:0.999,C;3:0.999. ' " tem for embedding dimensiam=3 (a) andm=4 (b). Increasingm

results in a larger window in the delay time for which the system is
. . L . reconstructed, i.e., the LE’s coincide well. The thin dotted lines
(i) The quality (_)f th(_a regressian given by the correlation j,qicate the LE's for the original  systemp;=0.432, \,
Cio, cf. (7). We find in our caseC;;=0.992,C5=0.999, =g ),=-6.31: the straight, dash-dotted, and dashed lines the cor-
C30=0.995, such that the modeling error is very small. respondent ones for the reconstructed system.
(ii) The importance of functions found by the coeffi-

cients C;;, defined in Eq.(7) (i,j=1,2,3. We find C; 3(a)]. By eye, it is hard to recognize which attractor is re-
>0.9900i,j; consequently every function is substantial hereconstructed or embedde#ig. 1). With this study, we have
(cf. Fig. 2. Given that we analyzed 50 000 data points, thedetermined the delay which is optimal in the sense of non-
C;; refer to a very high correlation. Therefore we infer a parametric embedding. Usually, the delay is chosen such that
property of the embedding transformation: each of the emthe information content in the delay coordinate vector is
bedding space coordinatéscontains information necessary maximized. To do so one determines the minimum of the
for the dynamics. mutual information or the first zero of autocorrelation, or
(i) The nine functionsy;, displayed in Fig. 2, are the similar measure$3]. It turns out that these approaches do
most important result for an application. All functions are not yield a delay different from ours.
important and nonlinear, to a good approximation of cubic If the embedding dimension is increased, one expects a
order; only ¢,5 appears to be a piecewise linear function.good reconstruction in a larger delay-time window, because
The quantitative comparison of the dynamics of the reconmore information is used. This is confirmed by the calcula-
structed and the original system is done(bycalculation of  tion of the LE's withm=4 [Fig. 3(b)], where a good recon-
the fixed points,(ii) their stability, and(iii) the Lyapunov struction is found for 0.08 r<0.36. The attractor forr
exponentgLE’s) of the reconstructed system. These quanti-=0.2 is shown for comparisofFig. 1, top.
ties have to coincide with the ones of the original system. At m=4, there is a breakdown of the reconstruction for
(i) Fixed points We so|vedzj:1¢ij:o (i=1,2,3 numeri- 0.22<7<0.26, whereasn=3 yields good resultgFig. 3.
cally with the functions from the output of the analysis. The This is unexpected and a conclusive explanation requires fur-
three fixed points of the embedded system &@.75, ther investigation.

-7.75,-7.75, (0, 0, 0, (7.75, 7.75, 7.76with an accuracy A particularity of the modified Chua system is its additive
of 10°3. In the system, reconstructed witt=0.2, the fixed ~Structure. Next, we check whether a successful reconstruc-
. F_ _ _ F_ tion can be found for dynamical systems with multiplicative
pomf are & =( ?'76’ 7.55,~1.66 &=(7.75,7.52,7.68 terms, too, such as the Lorenz or the Rossler sthem. For

and &;=(0,0,0 with an error of less than 1%.

¢ Y _ _ _ both, we find a worse capability of our method to reconstruct
(i) Stability analysis The eigenvalues, corresponding to the dynamics. For the Lorenz systefo=10,0=28,8

the above fixed points, arey;=(-7.68,0.47+4.45,0.47  =g/3) one of the best results appears e10.09; the corre-
~i4.45, ¥,=(-7.62,0.5844.55,0.59+4.55, ¥3=(5.09,  sponding reconstructed attractor is shown in Fig. 4. Clearly,
-1.16+4.56,-1.16+4.56) to be compared with the ones of some of the dynamics is lost, nevertheless a chaotic motion
the original Chua system:y,,=(-8.76,0.2845.20,0.28 about the correct fixed points is found. The largest LE is
-i5.20, ,,=(-8.76,0.28+45.20,0.2845.20, ¥,3=(5.03,  found, \,,.=0.08, to be compared with the original one,
-1.21+4.71,-1.21+4.71). For the embedded attractor, =0.905. Tests wittm=4 andm=5 did not yield significant
there is nothing to calculate due to missing equations. Furimprovement. The reason lies probably in the topology of the
thermore, the embedding conserves dynamical propertiegttractor which cannot be produced by a purely additive
The contraction rate frony, , is found within 15%, the ex- model of reasonably low dimensionality. This is a limit of
pansion rate fromy; is found within 1%, the imaginary parts the additive modeling approach.
coincide within 15%. We have reconstructed a dynamical system by a set of
(iii) Lyapunov exponents and dependence on the delagrdinary differential equations in embedding space. We have
We calculated the Lyapunov exponents of the reconstructedonsidered additive models only, and have used as a typical
system for 0< 7< 1. For most of the delays no useful recon- chaotic system a modified Chua oscillator for illustration.
struction is possible, however in the window 044  The resulting equations can be analyzed by dynamical sys-
<0.28 the LE's are very close to the original ongdg.  tems theory: we have investigated the fixed-point structure,
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§3 rather use a mapping approact0]. Decision on additivity
of a model works by statistical measurésorrelations or

ig least-squares errgr whereas dynamical measures, as
20 Lyapunov exponents, indicate how well the dynamics is re-
" produced.
From a theoretical point of view, we formulate the follow-
20 20 ing general question: Given a dynamical systéadditive/
20 multiplicative structurg which topology of a corresponding
15 §2 attractor is possible? Vice versa, given a topology and dy-

20 20 namics, which is the structure of the underlying dynamical

3
system? We have treated a given topol¢gfythe Chua, Lo-

FIG. 4. RECQnStruction for the Lorenz Systeém:3). A part of . renz, and RoOssler Systemaking into account the embed-
the dynamics is not reconstructed, but may be recovered Wwithjing theorem, the problem is transferred to embedding space.
higher dimensional embedding. There, we have reconstructed a dynamical system of additive
linear stability, and Lyapunov exponents, and have found thagtructure for the Chua system, less convincingly for the Lo-
these dynamical characteristics quantitatively coincide withenz and Rossler system. This suggests that the additive
the ones of the original system. By studying the dependencstructure is kept. Mathematically, related questions have
of the results on the delay time, we could identify the win-been treated in5]. A key role is played by the nonlinear
dow in which our method works very well. Higher embed- embedding transformation which can distort the system con-

ding dimensions enlarge this window; overdeterminationsiderably. The above questions are open and touch the core
can, however, let the description break down. For nonaddipf modern theories of dynamical systems.

tive systems, our analysis works qualitatively. A quantitative  cyrrent and future activities focus on generalization to
comparison is in general not possible, although the resulfaconstruct mixed additive/multiplicative models following
indicates which terms can be important in a more generakoimogorovs ideas, especially for real data. One goal is to
model. o o o follow the way from the general modé®) to a purely addi-

In the method, the statistical backfitting algorithm is usediye model (5). Finding the model which involves the least
for an estimation of the CEV; the result is a set of optimal,sssiple multiplicative and additive terms yields a consider-
functions ¢;. It is inherently insensitive against noit&,8]  apje ease to analyze the systems. With an analytical expres-
and can be generalized in many ways. The results are fungjgn a detailed analysis and long-term prediction dtta-
tions of one variable and can be visualized and approximategtic) orbit is possible; this is an unprecedented result.
by analytical formulasafter the backfitting procedure. This Applications for our method reach from geophysics and cli-
yields an important advantage: when fitting polynomials Omatology, to biology and medicine, where the prediction of,

other basis systems one chooses these functionsy climate change or illness detection are topics of great
beforehand—this is not needed in the nonparametrigyterest.

approach—and the result is still interpretable. From a prac-

tical point of view, the input data are crucial for a good We thank B. Fiedler, P. Grassberger, M. Holschneider, and
estimation on a connected region and an estimation of deA. Pikovsky for helpful discussions. M. A. and K. A. are
rivatives. Asymptotics and gaps due to missing data have teupported by the German Science Foundation, DFG; J. K
be treated with great care, or instead of derivatives one migrand S. M. acknowledge a EU graiitPRN-CT-2000-00158
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