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We present a nonparametric way to retrieve an additive system of differential equations in embedding space
from a single time series. These equations can be treated with dynamical systems theory and allow for
long-term predictions. We apply our method to a modified chaotic Chua oscillator in order to demonstrate its
potential.
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Casting physical observations into mathematical equa-
tions is one of the fundamental tasks to understand and pre-
dict dynamical systems. Basically, there are two complemen-
tary approaches to accomplish this task: theoretically, by
convenient considerations, and empirically, by data analysis.
Both approaches are essential for modern modeling strate-
gies. If, for many systems, the dynamics is not directly ac-
cessible to theoretical considerations, then an appropriate
data analysis is essential. This problem is very general; one
can find it in classical fields of physics, e.g., classical me-
chanics, fluid dynamics, solid-state physics, statistical phys-
ics, as well as in more interdisciplinary fields, e.g., physiol-
ogy, earth sciences, economics, or biological systems. In this
paper the data analysis issue is addressed: we determine an
analytically treatable set of additive equations in embedding
space by the method of nonparametric embedding. This ap-
proach isa priori parameter-free; butsubsequentparametri-
zation can be helpful for analytical representation of the in-
volved functions.

Often, the measurement of a complex system does not
yield the whole set of state variables. The missing dynamics
can be accessed by theembeddingtechniquef1g. Given the
measurement of a subset of variables, one can infer the miss-
ing information by an embedding map, e.g., by using the
time-delayed variables or their derivatives. This has been
proven rigorously for a wide class of systemsf2g. It is, how-
ever, not known how the equations of the dynamical system
in embedding space are structured. In this communication,
we propose a technique to find a set of equations which
allows a reproduction of the dynamics in phase space for the
class ofadditivesystems.

There are several excellent reviews about embedding
f2–4g; therefore, we only repeat some basic facts. We con-
sider a system governed by a set of ordinary differential
equations,

xẆ = FsxWd, s1d

where xW PRn, F :Rn°Rn. This set of equations defines a
flow, Ft, in phase space. We assume that there exists an at-
tractorA,Rn with the box-counting dimensiondøn. In f2g
it has been shown that almost every smooth map

C :Rn°Rm, m.2d, is an embedding, i.e., a smooth diffeo-
morphism fromA onto its imageCsAd. The conditionm
.2d is sufficient, therefore cases withd,m,2d can occur.

Due to differentiability, the dynamics ofjWstd=C(xWstd)
obeys an ordinary differential equation in embedding space,

jẆ = FsjWd, s2d

with jW PRm, F :Rm°Rm. In this paper, we focus onadditive
models for the componentsFi and show how to retrieve
them from data.

One standard way of embedding is the use of the delay-
coordinate mapHsf ,td, with the smooth observation func-
tion, f :Rn°R, andt, the time delay, some real numberf2g,

Hsf,td = „f, ffF−tg, . . . ,ffF−sm−1dtg…. s3d

As an example, consider the particular case offsxWd=x1. Iden-
tifying the above embedding mapC with H, the coordinates
in embedding space arej1std= fsxWd=x1std ,j2std= f(F−tsxd)
=x1st−td, etc.

In our analysis, we perform numerical simulations for
some model systems to obtain the time series of various
variables. We then discard all but one variable to embed the
dynamical systems2d using the delay map. To avoid confu-
sion, we will refer to dynamics from Eq.s1d asoriginal. For
the counterpart, Eq.s2d, to be estimated by nonparametric
regression, we will use the termreconstructed. If the embed-
ding mapC is concerned,embeddedwill be used—the latter
meaning that a time series from the original system is used,
i.e., without knowing the dynamical systems2d.

To find a dynamical system in embedding space, several
approaches exist, e.g., local linear fits and parametric proce-
dures as polynomial fits, radial basis functions, or neural
networksscf. f3gd. Local fitting is a general concept, but the
results are neither easy to access analytically nor to visualize
due to the high dimensionality. Polynomial ansatzes tend to
involve too many terms for a clear identification of a math-
ematical or physical structure; for neural networks a physical
interpretation is very hard.

Now we describe our procedure in more detail: Consider-
ing each temporal measurement as a realization of the flow,
one obtains as a best estimator of the components of Eq.s2d
in the least-square sensef3g:*Electronic address: markus@stat.physik.uni-potsdam.de
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Fi = Efj̇iuj1, . . . ,jmg, s4d

with Ef·u ·g the conditional expectation valuesCEVd operator.
It is a very hard task to extract analytical models from Eq.
s4d; visualization is obviously impossible form.2.

To tackle this problem, we require the right-hand side
srhsd of Eq. s2d to be an additive model,

Fi = o
j=1

m

fi jsj jd. s5d

This is a subset of the class of models considered by Kol-
mogorovf5g: he showed rigorously that it is possible to rep-
resent any continuous function of a set ofm variables as a
2m+1-fold superposition ofm functions of one argument.
Below, we show that despite the less general formulation it is
possible to reconstruct a chaotic dynamical system. Our
model s5d is, however, still in a wider model class than in
parametric methods, because we do not rely on a given set of
basis functions. After having finally estimated the compo-
nentsfi j , we can easily visualize the functions and try ana-
lytical formulas.

It is worth noting the geometrical aspect of our approach:
Equations2d defines a differentiable manifold approximated
by the sum of the functionsfi j , cf. Eq. s5d. This is possible
within a certain scatter, which is quantified below by the
correlation. If the manifold is found exactly by the model,
the correlation is 1. Dynamical and topological properties of
the original system are mirrored in embedding space. Long-
term predictions of the dynamics are thus possible on the
basis of the obtained model if the correlation is close to 1,
which is a very strong advantage.

The optimal estimate for thefi j is calculated by the back-
fitting algorithm f6g. It works by alternately applying the
CEV operator to projections ofFi on the coordinates:

fi jsj jd=Efj̇i −okÞ jfik uj jg, and is proven to converge to the
global optimum in the least-squarefEq. s6dg or correlation
fEq. s7dg sense. For the application to spatiotemporal data
analysis, seef7,8g. We calculate the CEV by smoothing
splines, which are optimal for nonparametric regressionf6g,
due to their smoothness and differentiability properties. It is
important to note that the parameters used by splines or other
estimators are method inherent and not prescribed by a pre-
selected model; in this sense the model is parameter-free.

As an overall quality measure, the least-square error can
be used,

xi
2 = EFSFi − o

k=1

m

fikD2G . s6d

The backfitting method, however, is formulated as optimal in
the sense of correlation, i.e., the natural measure is the cor-
relation coefficientCi0 between the rhs and lhs in Eq.s5d.
The correlation coefficientCij , given in Eq.s7d, indicates its
individual weight for the model,

Ci0 = CFFi ;o
k=1

m

fikG, Cij = CFfi j ;Fi − o
kÞ j

m

fikG . s7d

We will useCi0 as a quantitative measure, but notx2. Putting
Fi =Y, ok=1

m fik=X, we give the relation between both mea-
sures: 23Ci0ÎVarsXdVarsYd=VarsXd+VarsYd+fEsX−Ydg2

−xi
2, with Vars·d the variance. A correlation close to 1 means

the manifold described by Eq.s2d is approximated very well,
lower correlations indicate scatter of data points around the
manifold. In the case of experimental data, measurement
noise can produce some additional scatter.

In the following, the procedure is illustrated by the ex-
ample of a modified Chua circuitf9g with a third-order non-
linearity. The basic equations read

ẋ1 = asm0x1 − 1/3m1x1
3 + x2d,

ẋ2 = x1 − x2 + x3, ẋ3 = − bx2. s8d

Written as an additive models5d these equations read
ẋ1= f1,1sx1d+ f1,2sx2d, ẋ2= f2,1sx1d+ f2,2sx2d+ f2,3sx3d ,
ẋ3= f3,2sx2d , with the linear functionsf1,2, f2,i, f3,2, and f1,1 a
third-order polynomial.

We integrate the systems8d with a=18, b=33, m0=0.2,
m1=0.01, numerically, by a Runge-Kutta algorithm of fourth
order. The time series of the first component is used for
embedding. Results do not change for other components. We
first discuss embedding dimensionm=3. From the time se-

ries xstd, the pointsj̇i = ẋ(t−tsi −1d), j1=xstd, j2=xst−td, j3

=xst−2td are used. The derivative is taken directly from the
integration; this is more exact than the estimate by finite
differences. The nonparametric regression yields the func-
tions fi j for the resulting dynamical systems5d.

First, we present results for the specific delay,t=0.2; we
study below the dependence of the results on the delay time.
For t=0.2, the embedded and the reconstructed attractor are
shown together in Fig. 1. With respect to the data analysis,
we want to quantifysid the quality of the regression,sii d the
importance of the functionsfi j , andsiii d the functions them-
selves.

FIG. 1. Embedding of the first component of the systems8d with
delayt=0.2. The system, embedded withm=3 sbottomd, is shown
together with the reconstructed trajectory from the integration of the
systems obtained by nonparametric regression for embedding di-
mensions 3smiddled and 4stopd, respectively. An offset is added to
avoid overlap of the attractors.
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sid The quality of the regressionis given by the correlation
Ci0, cf. s7d. We find in our caseC10=0.992, C20=0.999,
C30=0.995, such that the modeling error is very small.

sii d The importance of functionsis found by the coeffi-
cients Cij , defined in Eq.s7d si , j =1,2,3d. We find Cij

.0.99∀ i , j ; consequently every function is substantial here
scf. Fig. 2d. Given that we analyzed 50 000 data points, the
Cij refer to a very high correlation. Therefore we infer a
property of the embedding transformation: each of the em-
bedding space coordinatesji contains information necessary
for the dynamics.

siii d The nine functionsfi j , displayed in Fig. 2, are the
most important result for an application. All functions are
important and nonlinear, to a good approximation of cubic
order; only f13 appears to be a piecewise linear function.
The quantitative comparison of the dynamics of the recon-
structed and the original system is done bysid calculation of
the fixed points,sii d their stability, andsiii d the Lyapunov
exponentssLE’sd of the reconstructed system. These quanti-
ties have to coincide with the ones of the original system.

sid Fixed points. We solvedo j=1
3 fi j =0 si =1,2,3d numeri-

cally with the functions from the output of the analysis. The
three fixed points of the embedded system ares−7.75,
−7.75,−7.75d, s0, 0, 0d, s7.75, 7.75, 7.75d with an accuracy
of 10−3. In the system, reconstructed witht=0.2, the fixed

points are j1
*W=s−7.76,−7.55,−7.66d, j2

*W=s7.75,7.52,7.68d,
andj3

*W=s0,0,0d with an error of less than 1%.
sii d Stability analysis. The eigenvalues, corresponding to

the above fixed points, aregW1=s−7.68,0.47+i4.45,0.47
− i4.45d, gW2=s−7.62,0.58+i4.55,0.59−i4.55d, gW3=s5.09,
−1.16+i4.56,−1.16−i4.56d to be compared with the ones of
the original Chua system:gWo,1=s−8.76,0.28+i5.20,0.28
− i5.20d, gWo,2=s−8.76,0.28+i5.20,0.28−i5.20d, gWo,3=s5.03,
−1.21+i4.71,−1.21−i4.71d. For the embedded attractor,
there is nothing to calculate due to missing equations. Fur-
thermore, the embedding conserves dynamical properties.
The contraction rate fromgW1,2 is found within 15%, the ex-
pansion rate fromgW3 is found within 1%, the imaginary parts
coincide within 15%.

siii d Lyapunov exponents and dependence on the delay.
We calculated the Lyapunov exponents of the reconstructed
system for 0,tø1. For most of the delays no useful recon-
struction is possible, however in the window 0.14,t
,0.28 the LE’s are very close to the original onesfFig.

3sadg. By eye, it is hard to recognize which attractor is re-
constructed or embeddedsFig. 1d. With this study, we have
determined the delay which is optimal in the sense of non-
parametric embedding. Usually, the delay is chosen such that
the information content in the delay coordinate vector is
maximized. To do so one determines the minimum of the
mutual information or the first zero of autocorrelation, or
similar measuresf3g. It turns out that these approaches do
not yield a delay different from ours.

If the embedding dimension is increased, one expects a
good reconstruction in a larger delay-time window, because
more information is used. This is confirmed by the calcula-
tion of the LE’s withm=4 fFig. 3sbdg, where a good recon-
struction is found for 0.08,t,0.36. The attractor fort
=0.2 is shown for comparisonsFig. 1, topd.

At m=4, there is a breakdown of the reconstruction for
0.22,t,0.26, whereasm=3 yields good resultssFig. 3d.
This is unexpected and a conclusive explanation requires fur-
ther investigation.

A particularity of the modified Chua system is its additive
structure. Next, we check whether a successful reconstruc-
tion can be found for dynamical systems with multiplicative
terms, too, such as the Lorenz or the Rössler system. For
both, we find a worse capability of our method to reconstruct
the dynamics. For the Lorenz systemss=10,r=28,b
=8/3d, one of the best results appears fort=0.09; the corre-
sponding reconstructed attractor is shown in Fig. 4. Clearly,
some of the dynamics is lost, nevertheless a chaotic motion
about the correct fixed points is found. The largest LE is
found, lrec=0.08, to be compared with the original one,lo
=0.905. Tests withm=4 andm=5 did not yield significant
improvement. The reason lies probably in the topology of the
attractor which cannot be produced by a purely additive
model of reasonably low dimensionality. This is a limit of
the additive modeling approach.

We have reconstructed a dynamical system by a set of
ordinary differential equations in embedding space. We have
considered additive models only, and have used as a typical
chaotic system a modified Chua oscillator for illustration.
The resulting equations can be analyzed by dynamical sys-
tems theory: we have investigated the fixed-point structure,

FIG. 2. Reconstructed functionsfi j , i =1,2,3 in embedding
space.sad f1j, sbd f2j, scd f3j, for j =1 ssolid lined, j =2 sdotted
lined, and j =3 sdashed lined. All functions are important with
C11=0.999, C12=0.99, C13=0.998, C21=0.999, C22=0.991,
C23=0.999,C31=0.997,C32=0.999,C33=0.999.

FIG. 3. Lyapunov exponents for original and reconstructed sys-
tem for embedding dimensionm=3 sad andm=4 sbd. Increasingm
results in a larger window in the delay time for which the system is
reconstructed, i.e., the LE’s coincide well. The thin dotted lines
indicate the LE’s for the original system,l1=0.432, l2

=0, l3=−6.31; the straight, dash-dotted, and dashed lines the cor-
respondent ones for the reconstructed system.
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linear stability, and Lyapunov exponents, and have found that
these dynamical characteristics quantitatively coincide with
the ones of the original system. By studying the dependence
of the results on the delay time, we could identify the win-
dow in which our method works very well. Higher embed-
ding dimensions enlarge this window; overdetermination
can, however, let the description break down. For nonaddi-
tive systems, our analysis works qualitatively. A quantitative
comparison is in general not possible, although the result
indicates which terms can be important in a more general
model.

In the method, the statistical backfitting algorithm is used
for an estimation of the CEV; the result is a set of optimal
functionsfi j . It is inherently insensitive against noisef6,8g
and can be generalized in many ways. The results are func-
tions of one variable and can be visualized and approximated
by analytical formulasafter the backfitting procedure. This
yields an important advantage: when fitting polynomials or
other basis systems one chooses these functions
beforehand—this is not needed in the nonparametric
approach—and the result is still interpretable. From a prac-
tical point of view, the input data are crucial for a good
estimation on a connected region and an estimation of de-
rivatives. Asymptotics and gaps due to missing data have to
be treated with great care, or instead of derivatives one might

rather use a mapping approachf10g. Decision on additivity
of a model works by statistical measuresscorrelations or
least-squares errord, whereas dynamical measures, as
Lyapunov exponents, indicate how well the dynamics is re-
produced.

From a theoretical point of view, we formulate the follow-
ing general question: Given a dynamical systemsadditive/
multiplicative structured, which topology of a corresponding
attractor is possible? Vice versa, given a topology and dy-
namics, which is the structure of the underlying dynamical
system? We have treated a given topologysof the Chua, Lo-
renz, and Rössler systemd; taking into account the embed-
ding theorem, the problem is transferred to embedding space.
There, we have reconstructed a dynamical system of additive
structure for the Chua system, less convincingly for the Lo-
renz and Rössler system. This suggests that the additive
structure is kept. Mathematically, related questions have
been treated inf5g. A key role is played by the nonlinear
embedding transformation which can distort the system con-
siderably. The above questions are open and touch the core
of modern theories of dynamical systems.

Current and future activities focus on generalization to
reconstruct mixed additive/multiplicative models following
Kolmogorovs ideas, especially for real data. One goal is to
follow the way from the general models2d to a purely addi-
tive model s5d. Finding the model which involves the least
possible multiplicative and additive terms yields a consider-
able ease to analyze the systems. With an analytical expres-
sion a detailed analysis and long-term prediction of ascha-
oticd orbit is possible; this is an unprecedented result.
Applications for our method reach from geophysics and cli-
matology, to biology and medicine, where the prediction of,
e.g., climate change or illness detection are topics of great
interest.
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FIG. 4. Reconstruction for the Lorenz systemsm=3d. A part of
the dynamics is not reconstructed, but may be recovered with
higher dimensional embedding.
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